Domain webblogging.de kaufen?

Produkte zum Begriff Hadoop:


  • Data Munging with Hadoop
    Data Munging with Hadoop

    The Example-Rich, Hands-On Guide to Data Munging with Apache HadoopTM   Data scientists spend much of their time “munging” data: handling day-to-day tasks such as data cleansing, normalization, aggregation, sampling, and transformation. These tasks are both critical and surprisingly interesting. Most important, they deepen your understanding of your data’s structure and limitations: crucial insight for improving accuracy and mitigating risk in any analytical project.   Now, two leading Hortonworks data scientists, Ofer Mendelevitch and Casey Stella, bring together powerful, practical insights for effective Hadoop-based data munging of large datasets. Drawing on extensive experience with advanced analytics, the authors offer realistic examples that address the common issues you’re most likely to face. They describe each task in detail, presenting example code based on widely used tools such as Pig, Hive, and Spark.   This concise, hands-on eBook is valuable for every data scientist, data engineer, and architect who wants to master data munging: not just in theory, but in practice with the field’s #1 platform–Hadoop.   Coverage includes A framework for understanding the various types of data quality checks, including cell-based rules, distribution validation, and outlier analysis Assessing tradeoffs in common approaches to imputing missing values Implementing quality checks with Pig or Hive UDFs Transforming raw data into “feature matrix” format for machine learning algorithms Choosing features and instances Implementing text features via “bag-of-words” and NLP techniques Handling time-series data via frequency- or time-domain methods Manipulating feature values to prepare for modeling Data Munging with Hadoop is part of a larger, forthcoming work entitled Data Science Using Hadoop. To be notified when the larger work is available, register your purchase of Data Munging with Hadoop at informit.com/register and check the box “I would like to hear from InformIT and its family of brands about products and special offers.”

    Preis: 4.27 € | Versand*: 0 €
  • Data Munging with Hadoop
    Data Munging with Hadoop

    The Example-Rich, Hands-On Guide to Data Munging with Apache HadoopTM   Data scientists spend much of their time “munging” data: handling day-to-day tasks such as data cleansing, normalization, aggregation, sampling, and transformation. These tasks are both critical and surprisingly interesting. Most important, they deepen your understanding of your data’s structure and limitations: crucial insight for improving accuracy and mitigating risk in any analytical project.   Now, two leading Hortonworks data scientists, Ofer Mendelevitch and Casey Stella, bring together powerful, practical insights for effective Hadoop-based data munging of large datasets. Drawing on extensive experience with advanced analytics, the authors offer realistic examples that address the common issues you’re most likely to face. They describe each task in detail, presenting example code based on widely used tools such as Pig, Hive, and Spark.   This concise, hands-on eBook is valuable for every data scientist, data engineer, and architect who wants to master data munging: not just in theory, but in practice with the field’s #1 platform–Hadoop.   Coverage includes A framework for understanding the various types of data quality checks, including cell-based rules, distribution validation, and outlier analysis Assessing tradeoffs in common approaches to imputing missing values Implementing quality checks with Pig or Hive UDFs Transforming raw data into “feature matrix” format for machine learning algorithms Choosing features and instances Implementing text features via “bag-of-words” and NLP techniques Handling time-series data via frequency- or time-domain methods Manipulating feature values to prepare for modeling Data Munging with Hadoop is part of a larger, forthcoming work entitled Data Science Using Hadoop. To be notified when the larger work is available, register your purchase of Data Munging with Hadoop at informit.com/register and check the box “I would like to hear from InformIT and its family of brands about products and special offers.”

    Preis: 5.34 € | Versand*: 0 €
  • Virtualizing Hadoop: How to Install, Deploy, and Optimize Hadoop in a Virtualized Architecture
    Virtualizing Hadoop: How to Install, Deploy, and Optimize Hadoop in a Virtualized Architecture

    Plan and Implement Hadoop Virtualization for Maximum Performance, Scalability, and Business Agility   Enterprises running Hadoop must absorb rapid changes in big data ecosystems, frameworks, products, and workloads. Virtualized approaches can offer important advantages in speed, flexibility, and elasticity. Now, a world-class team of enterprise virtualization and big data experts guide you through the choices, considerations, and tradeoffs surrounding Hadoop virtualization. The authors help you decide whether to virtualize Hadoop, deploy Hadoop in the cloud, or integrate conventional and virtualized approaches in a blended solution.   First, Virtualizing Hadoop reviews big data and Hadoop from the standpoint of the virtualization specialist. The authors demystify MapReduce, YARN, and HDFS and guide you through each stage of Hadoop data management. Next, they turn the tables, introducing big data experts to modern virtualization concepts and best practices.   Finally, they bring Hadoop and virtualization together, guiding you through the decisions you’ll face in planning, deploying, provisioning, and managing virtualized Hadoop. From security to multitenancy to day-to-day management, you’ll find reliable answers for choosing your best Hadoop strategy and executing it.   Coverage includes the following:           •        Reviewing the frameworks, products, distributions, use cases, and roles associated with Hadoop           •        Understanding YARN resource management, HDFS storage, and I/O           •        Designing data ingestion, movement, and organization for modern enterprise data platforms           •        Defining SQL engine strategies to meet strict SLAs           •        Considering security, data isolation, and scheduling for multitenant environments           •        Deploying Hadoop as a service in the cloud           •        Reviewing the essential concepts, capabilities, and terminology of virtualization            •        Applying current best practices, guidelines, and key metrics for Hadoop virtualization           •        Managing multiple Hadoop frameworks and products as one unified system           •        Virtualizing master and worker nodes to maximize availability and performance           •        Installing and configuring Linux for a Hadoop environment  

    Preis: 25.67 € | Versand*: 0 €
  • Virtualizing Hadoop: How to Install, Deploy, and Optimize Hadoop in a Virtualized Architecture
    Virtualizing Hadoop: How to Install, Deploy, and Optimize Hadoop in a Virtualized Architecture

    Plan and Implement Hadoop Virtualization for Maximum Performance, Scalability, and Business Agility   Enterprises running Hadoop must absorb rapid changes in big data ecosystems, frameworks, products, and workloads. Virtualized approaches can offer important advantages in speed, flexibility, and elasticity. Now, a world-class team of enterprise virtualization and big data experts guide you through the choices, considerations, and tradeoffs surrounding Hadoop virtualization. The authors help you decide whether to virtualize Hadoop, deploy Hadoop in the cloud, or integrate conventional and virtualized approaches in a blended solution.   First, Virtualizing Hadoop reviews big data and Hadoop from the standpoint of the virtualization specialist. The authors demystify MapReduce, YARN, and HDFS and guide you through each stage of Hadoop data management. Next, they turn the tables, introducing big data experts to modern virtualization concepts and best practices.   Finally, they bring Hadoop and virtualization together, guiding you through the decisions you’ll face in planning, deploying, provisioning, and managing virtualized Hadoop. From security to multitenancy to day-to-day management, you’ll find reliable answers for choosing your best Hadoop strategy and executing it.   Coverage includes the following:           •        Reviewing the frameworks, products, distributions, use cases, and roles associated with Hadoop           •        Understanding YARN resource management, HDFS storage, and I/O           •        Designing data ingestion, movement, and organization for modern enterprise data platforms           •        Defining SQL engine strategies to meet strict SLAs           •        Considering security, data isolation, and scheduling for multitenant environments           •        Deploying Hadoop as a service in the cloud           •        Reviewing the essential concepts, capabilities, and terminology of virtualization            •        Applying current best practices, guidelines, and key metrics for Hadoop virtualization           •        Managing multiple Hadoop frameworks and products as one unified system           •        Virtualizing master and worker nodes to maximize availability and performance           •        Installing and configuring Linux for a Hadoop environment

    Preis: 19.25 € | Versand*: 0 €
  • Welche Blogging-Plattform?

    Es gibt viele verschiedene Blogging-Plattformen zur Auswahl, darunter WordPress, Blogger, Tumblr und Medium. Die beste Plattform hängt von den individuellen Bedürfnissen und Vorlieben ab, wie z.B. dem gewünschten Funktionsumfang, dem Design, der Benutzerfreundlichkeit und der Community. Es ist ratsam, verschiedene Plattformen auszuprobieren und zu sehen, welche am besten zu den eigenen Bedürfnissen passt.

  • Wie kann man Inhalte auf einer online Plattform veröffentlichen, ohne dabei gegen das Urheberrecht zu verstoßen?

    Man kann Inhalte veröffentlichen, für die man die Rechte besitzt oder die unter einer Creative Commons Lizenz stehen. Man kann auch selbst erstellte Inhalte teilen oder um Erlaubnis bitten, bevor man fremde Inhalte veröffentlicht. Es ist wichtig, immer die Quelle anzugeben und keine geschützten Werke ohne Genehmigung zu verwenden.

  • Wie kann man Inhalte legal und sicher online veröffentlichen?

    Um Inhalte legal und sicher online zu veröffentlichen, sollte man sicherstellen, dass man die Rechte an den Inhalten besitzt oder die erforderlichen Lizenzen erworben hat. Zudem sollte man darauf achten, keine urheberrechtlich geschützten Materialien ohne Erlaubnis zu verwenden. Um die Sicherheit der veröffentlichten Inhalte zu gewährleisten, empfiehlt es sich, eine sichere und verschlüsselte Verbindung zu verwenden und regelmäßige Backups der Daten anzulegen.

  • Wie kann man Inhalte legal und sicher online veröffentlichen?

    Um Inhalte legal und sicher online zu veröffentlichen, sollte man sicherstellen, dass man die Rechte an den Inhalten besitzt oder die entsprechenden Lizenzen erworben hat. Zudem ist es wichtig, sich an geltende Gesetze und Richtlinien zu halten, um rechtliche Konsequenzen zu vermeiden. Schließlich sollte man auch auf die Sicherheit der eigenen Online-Plattform achten, um Daten und Informationen vor unbefugtem Zugriff zu schützen.

Ähnliche Suchbegriffe für Hadoop:


  • Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm, Spark, and More Hadoop Alternatives
    Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm, Spark, and More Hadoop Alternatives

    Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning.   When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for:  Spark, the next generation in-memory computing technology from UC Berkeley Storm, the parallel real-time Big Data analytics technology from Twitter GraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo) Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics.   Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students.

    Preis: 32.09 € | Versand*: 0 €
  • Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data Computing in the Apache Hadoop 2 Ecosystem
    Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data Computing in the Apache Hadoop 2 Ecosystem

    Get Started Fast with Apache Hadoop® 2, YARN, and Today’s Hadoop Ecosystem   With Hadoop 2.x and YARN, Hadoop moves beyond MapReduce to become practical for virtually any type of data processing. Hadoop 2.x and the Data Lake concept represent a radical shift away from conventional approaches to data usage and storage. Hadoop 2.x installations offer unmatched scalability and breakthrough extensibility that supports new and existing Big Data analytics processing methods and models.   Hadoop® 2 Quick-Start Guide is the first easy, accessible guide to Apache Hadoop 2.x, YARN, and the modern Hadoop ecosystem. Building on his unsurpassed experience teaching Hadoop and Big Data, author Douglas Eadline covers all the basics you need to know to install and use Hadoop 2 on personal computers or servers, and to navigate the powerful technologies that complement it.   Eadline concisely introduces and explains every key Hadoop 2 concept, tool, and service, illustrating each with a simple “beginning-to-end” example and identifying trustworthy, up-to-date resources for learning more.   This guide is ideal if you want to learn about Hadoop 2 without getting mired in technical details. Douglas Eadline will bring you up to speed quickly, whether you’re a user, admin, devops specialist, programmer, architect, analyst, or data scientist.   Coverage Includes Understanding what Hadoop 2 and YARN do, and how they improve on Hadoop 1 with MapReduceUnderstanding Hadoop-based Data Lakes versus RDBMS Data WarehousesInstalling Hadoop 2 and core services on Linux machines, virtualized sandboxes, or clustersExploring the Hadoop Distributed File System (HDFS)Understanding the essentials of MapReduce and YARN application programmingSimplifying programming and data movement with Apache Pig, Hive, Sqoop, Flume, Oozie, and HBaseObserving application progress, controlling jobs, and managing workflowsManaging Hadoop efficiently with Apache Ambari–including recipes for HDFS to NFSv3 gateway, HDFS snapshots, and YARN configurationLearning basic Hadoop 2 troubleshooting, and installing Apache Hue and Apache Spark  

    Preis: 21.39 € | Versand*: 0 €
  • Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data Computing in the Apache Hadoop 2 Ecosystem
    Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data Computing in the Apache Hadoop 2 Ecosystem

    Get Started Fast with Apache Hadoop® 2, YARN, and Today’s Hadoop Ecosystem   With Hadoop 2.x and YARN, Hadoop moves beyond MapReduce to become practical for virtually any type of data processing. Hadoop 2.x and the Data Lake concept represent a radical shift away from conventional approaches to data usage and storage. Hadoop 2.x installations offer unmatched scalability and breakthrough extensibility that supports new and existing Big Data analytics processing methods and models.   Hadoop® 2 Quick-Start Guide is the first easy, accessible guide to Apache Hadoop 2.x, YARN, and the modern Hadoop ecosystem. Building on his unsurpassed experience teaching Hadoop and Big Data, author Douglas Eadline covers all the basics you need to know to install and use Hadoop 2 on personal computers or servers, and to navigate the powerful technologies that complement it.   Eadline concisely introduces and explains every key Hadoop 2 concept, tool, and service, illustrating each with a simple “beginning-to-end” example and identifying trustworthy, up-to-date resources for learning more.   This guide is ideal if you want to learn about Hadoop 2 without getting mired in technical details. Douglas Eadline will bring you up to speed quickly, whether you’re a user, admin, devops specialist, programmer, architect, analyst, or data scientist.   Coverage Includes Understanding what Hadoop 2 and YARN do, and how they improve on Hadoop 1 with MapReduceUnderstanding Hadoop-based Data Lakes versus RDBMS Data WarehousesInstalling Hadoop 2 and core services on Linux machines, virtualized sandboxes, or clustersExploring the Hadoop Distributed File System (HDFS)Understanding the essentials of MapReduce and YARN application programmingSimplifying programming and data movement with Apache Pig, Hive, Sqoop, Flume, Oozie, and HBaseObserving application progress, controlling jobs, and managing workflowsManaging Hadoop efficiently with Apache Ambari–including recipes for HDFS to NFSv3 gateway, HDFS snapshots, and YARN configurationLearning basic Hadoop 2 troubleshooting, and installing Apache Hue and Apache Spark  

    Preis: 16.04 € | Versand*: 0 €
  • Expert Hadoop Administration: Managing, Tuning, and Securing Spark, YARN, and HDFS
    Expert Hadoop Administration: Managing, Tuning, and Securing Spark, YARN, and HDFS

    This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book.   The Comprehensive, Up-to-Date Apache Hadoop Administration Handbook and Reference “Sam Alapati has worked with production Hadoop clusters for six years. His unique depth of experience has enabled him to write the go-to resource for all administrators looking to spec, size, expand, and secure production Hadoop clusters of any size.” —Paul Dix, Series Editor In Expert Hadoop® Administration, leading Hadoop administrator Sam R. Alapati brings together authoritative knowledge for creating, configuring, securing, managing, and optimizing production Hadoop clusters in any environment. Drawing on his experience with large-scale Hadoop administration, Alapati integrates action-oriented advice with carefully researched explanations of both problems and solutions. He covers an unmatched range of topics and offers an unparalleled collection of realistic examples. Alapati demystifies complex Hadoop environments, helping you understand exactly what happens behind the scenes when you administer your cluster. You’ll gain unprecedented insight as you walk through building clusters from scratch and configuring high availability, performance, security, encryption, and other key attributes. The high-value administration skills you learn here will be indispensable no matter what Hadoop distribution you use or what Hadoop applications you run. Understand Hadoop’s architecture from an administrator’s standpoint Create simple and fully distributed clusters Run MapReduce and Spark applications in a Hadoop cluster Manage and protect Hadoop data and high availability Work with HDFS commands, file permissions, and storage management Move data, and use YARN to allocate resources and schedule jobs Manage job workflows with Oozie and Hue Secure, monitor, log, and optimize Hadoop Benchmark and troubleshoot Hadoop

    Preis: 31.02 € | Versand*: 0 €
  • Wie kann man effektiv und legal Inhalte online veröffentlichen?

    Um Inhalte effektiv und legal online zu veröffentlichen, sollte man sicherstellen, dass man die Rechte an den Inhalten besitzt oder die erforderlichen Lizenzen hat. Zudem ist es wichtig, die Datenschutzbestimmungen zu beachten und gegebenenfalls eine Impressumspflicht zu erfüllen. Schließlich sollte man die Inhalte regelmäßig aktualisieren und auf relevante Plattformen teilen, um eine größere Reichweite zu erzielen.

  • Wie kann man erfolgreiches Blogging betreiben und dabei regelmäßig hochwertige Inhalte veröffentlichen?

    Um erfolgreiches Blogging zu betreiben und regelmäßig hochwertige Inhalte zu veröffentlichen, ist es wichtig, eine klare Nische oder Themenbereich zu wählen, in dem man sich gut auskennt und Leidenschaft hat. Zudem sollte man einen Redaktionsplan erstellen, um regelmäßig Beiträge zu veröffentlichen und die Leser zu binden. Schließlich ist es entscheidend, sich stetig weiterzubilden, um die Qualität der Inhalte zu verbessern und die Leserschaft zu erweitern.

  • Wie kann man seine eigenen Inhalte sicher und effektiv online veröffentlichen?

    1. Nutze sichere Passwörter für deine Accounts und Plattformen, um unbefugten Zugriff zu verhindern. 2. Verwende eine SSL-Verschlüsselung für deine Website, um die Sicherheit der Datenübertragung zu gewährleisten. 3. Überprüfe regelmäßig deine Inhalte auf Aktualität und Qualität, um die Effektivität deiner Online-Veröffentlichungen zu maximieren.

  • Wie kann man seine eigenen Inhalte auf legalen Wegen online veröffentlichen?

    Man kann seine eigenen Inhalte auf legalen Wegen online veröffentlichen, indem man sicherstellt, dass man die Rechte an den Inhalten besitzt oder die erforderlichen Lizenzen erworben hat. Zudem sollte man sich mit den Urheberrechtsbestimmungen vertraut machen und gegebenenfalls eine Creative Commons Lizenz verwenden. Schließlich kann man Plattformen wie YouTube, Vimeo oder WordPress nutzen, um die Inhalte einem breiten Publikum zugänglich zu machen.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.